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Commercial Airliner 1958
JT3C Turbojet
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Should teaching gas
turbine performance
begin with the turbojet?

Turbojets are in 2025 not
practice-relevant for
commercial airliners

That’s what | said during the presentation




Commercial Airliner 2023
& 30 CFM Leap Turbofan

Turbofans are
practice-relevant
now!

O

Could teaching
also begin with
the turbofan?
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. CFM56-3 Modular Design

The heart of any
aircraft gas
turbine
configuration is a
gas generator!

www.kurzke-consulting.de

The gas generator of the turbofan
should be the starting point, and it

] is from there that we can begin to

understand the rest of the system!

[ Generator
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= Introduction to the Thermodynamics of Gas Turbines

Turbojet @ 36000ft/0.85 Turboshaft SLS
1600 1600
1400 1400
—, 1200 —, 1200
X, X,
o) ®
5 1000 5 1000
© ©
L 800 L 800
5 5
F 600 F 600
400 § 400
20004\—/.2/ 4 6 8 1 1.2 1.4 16 209.2 0 2 4 6 8 1 1.2 1.4
Entropy [kJ/[kg K]] Entropy [kJ/[kg K]]

The simplest way to introduce
students to the field of gas turbine
performance is to model the cycle of
the gas generator as a turboshaft on a
sea-level test bed!

In fact, the operating cycle of a turbojet at
36,000 feet and Mach 0.85 is more complex
than that of a gas generator!
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About Equations

... are they suited for realistic gas turbine performance calculations?

No one uses equations
in practice!




Thermal Efficiency
The Academic Definition

AH = specific work in
kW per kg/s mass flow

AH; — AH,

é T p yr—1 p Yc—1
R L ) ) el
— th — T, T
= 14 13 Yc YT
== (Tz Tz) " (VC -1 Re + yr—1 " RT>/2

This equation uses different isentropic exponents y¢ v;
and gas constants R.,R; for the compressor and
turbine. Efficiencies n¢ mare isentropic.
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Em Thermal Efficiency — Academic Definition
Effect of Isentropic Exponent

With true gas properties:
The higher the pressure ratio,
the greater the thermal

efficiency.

With constant isentropic exponent:
The higher the burner exit
temperature, the greater the
thermal efficiency.

O
®

’y = 1 . 4 Thermal Efficiency ’y =f (T, fa r) Thermal Efficiency
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Color represents
thermal efficiency

T]C,pol=0'9 "qT,pol:o'9
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Two Definitions of Thermal Efficiency

Academic

No optimum
exists!
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Practice

_ AHp — AH,
Teh = W X FHV

There is an optimum
along the line where the
equivalence ratio is
equal to 0.6.

; 0
1750 2250 2750 750 1250 1750 2250 2750

Burner Exit Temperature [K]

v=f(T,far)

Mc,pol =0.9 MNT,pol =0.9 Equivalence ratio = ———— ,
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BEEL Thermal Efficiency — The Numbers

Academic Practice

- ~ AHp — AH, _ AHp — AH,
= Ten = AR Teh = W X FHV

E Tr MNen With y= f(T, far)
; | 65|
g I -E:-e—-j
ST ol
l—;é..ml] > 55] The academic definition of
I_mm S ' thermal efficiency yields
J Q0 bers that t
. ___I_Illlzlglg,/llgl/ll,, ‘ ‘\‘ oo
“ /I/I/I/I/I/I/I/I/ o
/m s d
Eaea
=t :
I 3

September 2025 Copyright © Joachim Kurzke 10
5 ‘




www.kurzke-consulting.de

September 2025

Observations

The result for constant v is misleading because it says that the highest
burner exit temperature gives the highest thermal efficiency.

The result for y=f(T,far) is misleading also because it says that the highest
pressure ratio gives the highest thermal efficiency.

The pressure ratios of up to 150 considered have nothing in common with
those of real gas turbines.

The heat addition method is not included in the academic definition of
thermal efficiency.

* |In practice, heat is added by burning fuel.

e The achievable temperature is limited by stoichiometric combustion

* The slope AT/AW;, decreases with increasing fuel-air-ratio until AT/AW; =0 for
stoichiometric combustion

Copyright © Joachim Kurzke
W, " @ ’
J J 1 ,‘. .‘:v*‘”t

11




= np55>

NUMERICAL PROPULSION
SYSTEM SIMULATION

A Consortium of SwelRf
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Performance Software V2 XA

The tool used in practice

1998

@ GasTurb 8

Q GasTurb Details

l‘f_ﬂ Smooth C Demo




The amount of cooling air
needed depends on both
the gas temperature and the
cooling air temperature.
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Pressure Ratio

60

Practical Design Space
Thermal Efficiency

Cooled turbine

Best Efficiency

1000

v i\

1250 1500 1750 2000
Burner Exit Temperature [K]

Copyright © Joachim Kurzke

e

2250

Stoichiometric combustion
does not yield the ultimate
thermal efficiency!
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— Practical Design Space
Specific Power
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me Why Increases Specific Power with T, ?
) Pressure Ratio = 12

1800 =
] 1600
1400}
—— ¥ 1200}
iz ;' Because the isobar lines
e 5 diverge. No equation is
=== § 10001} needed to explain why
8_ specific work increases with
= burner exit temperature!
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= De-Mystify Your Performance Software

... by doing calculations manually




----- Basic Data

----- Secondary Air System
B-FAmbient Conditions
-4 Comp Efficiency
-4 Comp Design

- = Turb Efficiency I n
- # Tip Clear.

- Reheat

- Nozzle Selection
BF-fNozzle Calculation

----- Stations
Is it Magic?
[}
©
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c
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X
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2
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W T P WRstd
Station kg/s K kPa kg/s FN = 26.37 kN Net Thrust
amb 288.15  101.325 TSFC = 25.0985 g/(kN*s) Thrust Specific Fuel Consumption
1 31.680 288.15  101.325 FN/W2 = 832.50 m/s Specific Thrust
2 31.680 288.15  100.312 32.000
3 31.680 630.42 1203.741 3.944 Prop Eff = 0.0000 Propulsion Efficiency
31 28.195 630.42 1203.741 eta core = 0.3884 Core Efficiency
4 28.857 1450.00 1167.629 5.617
l | 41 30.441 1411.20 1167.629 5.846 WF = 0.66194 kg/s Fuel Flow
49 30.441 1113.50 367.374 s NOx = 0.28659 NOx Severity Parameter
5 32.025 1091.37 367.374 17.190 XmM8 = 1.0000 Nozzle Throat Mach No.
6 32.025 1091.37 360.027 A8 = 0.0773 m? Geometric Nozzle Throat Area
8 32.025 1091.37 360.027 17.541 P8/Pamb = 3.5532 Nozzle Pressure Ratio
Bleed 0.317 630.42 1203.738 WB1d/W2 = 0.01000 Bleed Air Flow/Mass Flow W2
Ang8 = 20.00 deg Nozzle Petal Angle
P2/P1 = 0.9900 P4/P3 = 0.9700 P6/P5 0.9800 D8 = 0.9600 Nozzle Discharge Coefficient
Efficiencies: isentr polytr RNI P/P WCIN/W2 = 0.05000 Turbine Nozzle Guide Vane Cooling Air / W2
Compressor 0.8500 0.8913 0.990 12.000 WCIR/W2 =  0.05000 Turbine Rotor Cooling Air/ W2
C;IC Burner 0.9999 0.970 Loading = 100.00 % Burner Loading in % of the Cycle Design Point Value
(-:' N Turbine 0.8900 0.8757 1.798 3.178 e45 th = 0.87139 Thermodynamic Turbine Efficiency
7 far8 = 0.02111 Nozzle Throat Fuel-Air-Ratio
Mi_‘m‘ Spool mech Eff 0.9999 Nom Spd 12499 rpm PWX = 0.00 kw Power Offtake
\g
y  — = 4
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from those of computational fluid dynamics (CFD) and
finite element analysis (FEA) in one important aspect:

=D About Performance Software
— e Gas turbine performance calculation programs differ

Their output can be easily reproduced
on a pocket computer or with Excel.

-

* Doing that is not just an academic exercise, but often
necessary in practical engineering when partnersin a
collaborative project arrive at different results.
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Calculation of the Cycle by Hand
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" The program GasTurb Details is
the tool of choice to calculate gas
turbine component performance

by hand. Many people in the gas
turbine industry use it.

Q
Q

Qr
‘i GasTurb Details 6 - Gas Turbine Performance Calculation Elements

Close Help

Generic Isentropic Flow

Atmosphere

Temperature Rise Shock Losses

Flight Envelope

Heat Addition Press Loss Duct With Friction

Disk Design

Create Combustion Gas Compression

Read from a Picture

Data for a New Fuel Expansion

Generic Fuel

Turbine Velocity Triangles

Preferences

Gas Properties

Efficiency of a Cooled Turbine

H20 Properties

Heat Exchanger

Mixer
Nozzle

Performance

Ly

Psychrometrics

Fluid Properties
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mm Cycle Data
B CFM56-3 Take Off

The engine geometry depends on
the local Mach numbers.

The cycle calculsation yields the
total pressures and temperatures.
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Students will find it challenging
and interesting to reproduce the
geometry of an engine based on a

given cross-cut and publicly
available cycle data.

22
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Visualizing the Results

... a picture is worth a thousand words




— Parametric Study
Design Space

Pressure Ratio = 10 ... 30

Burner Exit Temperature = 1400 ... 1800 [K] P Tu':b'TnTe“g;ii’t‘?:;ﬁ:fffggomE
.31

£
%

\
.28 % \

27 T1%

This is a conventional
g parametric study from which

students can learn a lot.

O
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Pressure RAatio P13/P2

Operating Lines in the Fan Map

ISASLS
operating line

________ g | 35000ft / Mach 0.8
> operating line

Using colors makes graphics
easier to understand and
remember.
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Mass Flow W, ., [kg/s]
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: Enthalpy-Entropy Diagram

Effect of -5% Compressor Efficiency

Off Design

Drawing enthalpy-entropy diagrams to scale
can be very helpful for understanding the

effects of changes. It is much better than
using complex equations!

1.2 1.4
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Temperature [K]

2250
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Temperature-Entropy Diagram
Visualize the Amount of Heat Transferred

Why is afterburner SFC much larger than dry SFC ?

1.5 2

1
Entropy [kJ/[kg KI]]
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Drawing temperature-entropy diagrams to
scale can help to improve understanding of
thermodynamics. Presenting results in
graphical form is much more effective than
using complex equations!
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SL static, ISA

Energy Flow - Sankey Diagram
CFM56-3 Take Off

LPC+IPC drive = 37.3%

The Sankey diagram clearly shows
that the small gas generator
dominates the energy flows in a
turbofan.

HPC drive =47.8%

Burner
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| Work Potential - Exerqy Diagram
= Turbojet, Mach 2, 1?kym J

A turbojet could be an attractive
option for the propulsion system
of a supersonic fighter aircraft.

Compressor drive = 66.7%

An exergy diagram shows where
losses in terms of work potential
occur, which is important to
consider when analysing the
system.
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Alt=11000m / Mn=2.000 ISA
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The Iteration Progress

FROM SL static, ISA, Rel GG Speed=0.580
TO SL static, ISA, Rel GG Speed=1.000

N OHPT Flow
i 4 HPT Wark
3 & Core Nozzle
S 1.2} % LPT Flow
=] I O Byp Nozzle P/IP ) ) )
2 I A IPC Flow Off-design calculations require
% 11 bR R Sy Ry Ty el A HPC Flow multidimensional, iterative
4 i HLPTP/P algorithms. Sometimes, convergence
E I —T2-T1 Recirc problems are encountered. Solving
§ 8 A these problems is very important in
2 | practice. Graphics can be helpful.
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= Is It Magic?

De-Mystify your Performance Program !

B2 Yo

That's what a lecturer's really for — not teaching
complex equations that don't actually apply to
the day-to-day work of a performance engineer.




e A good bedtime read ...

@ Springer

Joachim Kurzke
lan Halliwell
Robert Hill

Propulsion and Power

An Exploration of Gas Turbine
Performance Modeling

LRI S Propulsion
and Power

PERE AR

|1 Joachim Kurzke
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[%%] Tan Halliwell
wiglm  iF An Exploration of Gas Turbine
IBedE Wt Performance Modeling

Second Edition

S\ o
21 Springer
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